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Abstract. A mixture of two types of super-paramagnetic colloidal particles with long-range dipolar inter-
action is confined by gravity to a flat interface of a hanging water droplet. The particles are observed by
video microscopy and the dipolar interaction strength is controlled by an external magnetic field. The local
structure as obtained by pair correlation functions and bond order statistics is investigated as a function of
system temperature and relative concentration. Although the system has no long-range order and exhibits
glassy dynamics, different types of stable crystallites coexist. The local order of the globally disordered
structure is explained by a small set of specific crystal structures. The statistics of crystal unit cells show a
continuous increase of local order with decreasing system temperature as well as a dependence on sample
history and local composition.

PACS. 82.70.Dd Colloids – 64.70.P- Glass transitions of specific systems

1 Introduction

Many systems show a dynamic arrest as revealed by a
drastic increase of viscosity. This phenomenon of kinetic
vitrification may take place even when a phase transition
into a long-range ordered state is possible and eventu-
ally may occur under appropriate conditions; examples
are monodisperse hard spheres [1], semicrystalline stacks
of lamellar crystals in polymers [2] or binary mixtures in
metal alloys [3].

It appears obvious that disordered structure and dy-
namics are related. One example for a close formal connec-
tion between structure and dynamics of a glass-forming
system is provided by Mode Coupling Theory (MCT),
since the only input into the MCT equations is the static
structure factor [4,5]. Nevertheless, the microscopic con-
nection between structure and dynamics is still under
strong debate [6–8], especially the question how crystal-
lization is connected to vitrification and dynamical hetero-
geneity [9,10]. Simulations [10] suggest that crystallization
plays a key role for the glass transition. The authors pro-
pose that “liquids tend to order into the equilibrium crys-
tal, but frustration effects of locally favored short-range
ordering on long-range crystalline ordering prevent crys-
tallization and help vitrification”.

It was found in experiments [11], simulations [12], and
theory [13] that glassy systems in 2D exhibit the full range
of glass phenomenology known in three-dimensional glass
formers, both in dynamics and structure. However, in ex-
periments, glassy behavior in two dimensions is only pos-
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sible by introducing polydispersity [13]. The simplest form
of polydispersity is that of a binary system, which may of
course also turn into binary crystal structures.

In experiments, colloidal glasses have the advantage
over atomic systems that, besides statistical averaged in-
formation about the local structure, “quasi-atomic” reso-
lution is provided by microscopy [6,11].

The binary colloidal 2D system investigated here con-
sists of a mixture of particles with two different magnetic
moments. It exhibits all typical phenomenological features
of a glass former, e.g. drastic increase of relaxation times
for increasing interaction strength, no long-range order,
and dynamic heterogeneities [11]. The dynamics of the
system was compared with MCT and good agreement was
found [13]. Partial clustering of small particles was ob-
served [14,15] due to the nonadditivity of the dipolar bi-
nary potential. This leads to a heterogeneous distribution
of particle composition, which results locally in a coexist-
ing variety of small areas with different underlying crystal
structures. Thus, heterogenous distribution of small parti-
cles suppresses long-range order. Extended stable crystal
structures for 2D binary dipoles were found in T = 0
lattice sum calculations [16,17]. Especially all locally or-
dered structures discussed in this paper were predicted to
be stable.

The idea that the disordered structure of this system is
made up from particular substructures (triangular struc-
tures) was originally discussed in [18]. However, in this
paper we suggest that the local ordered structure origi-
nates from the tendency of the binary mixture towards
crystallization.
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Fig. 1. Super-paramagnetic colloidal particles confined at a
water/air interface due to gravity. The curvature of the inter-
face is actively controlled to be completely flat; therefore the
system is considered to be ideally two-dimensional. A magnetic
field H perpendicular to the interface induces a magnetic mo-
ment m in each bead leading to a repulsive dipolar interaction.

Crystallization may be geometrically possible, pro-
vided the relative concentration matches a certain crystal
structure. However, crystallization is not at odds with a
glass transition in a binary system. A decrease in temper-
ature can force a system into a dynamically arrested state
due to strong increase of viscosity before crystallization
can establish long-range order. Since the small particles
cannot reorganize fast enough, much disorder is “frozen”
in. As a consequence different competing crystalline struc-
tures appear, while the global structure remains amor-
phous.

2 Experimental setup

Our experimental setup consists of a mixture of two dif-
ferent kinds of spherical and super-paramagnetic colloidal
particles (species A: diameter dA = 4.5µm, susceptibil-
ity χA = 6.22 · 10−11 Am2/T, density ρA = 1.5 g/cm3

and species B: dB = 2.8µm, χB = 6.6 · 10−12 Am2/T,
ρB = 1.3 g/cm3) which are confined by gravity to a wa-
ter/air interface. This interface is formed by a water drop
suspended by surface tension in a top sealed cylindrical
hole (6mm diameter, 1mm depth) of a glass plate as
sketched in Figure 1. A magnetic field H is applied per-
pendicular to the water/air interface inducing a magnetic
moment M = χH in each particle leading to a repulsive
dipole-dipole pair interaction. Counterpart of the poten-
tial energy is thermal energy which generates Brownian
motion. Thus the dimensionless interaction strength Γ is
defined by the ratio of the potential versus thermal en-
ergy:

Γ =
Emagn

kBT
∝ 1

Tsys

=
µ0

4π
· H

2 · (πρ)3/2

kBT
(ξ · χB + (1 − ξ)χA)2 . (1)

Here, ξ = NB/(NA + NB) is the relative concentration of
small species with NA big and NB small particles and ρ
is the area density of all particles. The average distance
of neighboring big particles is given by l = 1/

√
ρ

big
. The

interaction strength can be externally controlled by means
of the magnetic field H. Γ can be interpreted as an inverse
temperature and controls the behavior of the system.

Fig. 2. Coordinates of big (open circles) and small particles
(black discs) are shown for two values of Γ (left: 5, right: 674).
The Voronoi cells of only the big particles are sketched.

The ensemble of particles is visualized with video mi-
croscopy from below and the signal of a CCD 8-Bit gray-
scale camera is analyzed on a computer. The field of view
has a size of 1158 × 865µm2 containing typically 3 · 103

particles, whereas the whole sample contains about up to
105 particles. Standard image processing is performed to
get size, number and positions of the colloids. A computer
controlled syringe driven by a micro-stage controls the
volume of the droplet to get a completely flat surface.
In this way fluctuations around the set-point of particle
density are suppressed below 0.1% and the biggest ob-
served particle-density gradient in the horizontal plane is
less than 1%. The latter is achieved by a variation of the
inclination of the whole experimental setup. This inclina-
tion is also controlled actively by micro-stages with a reso-
lution of α ≈ 1µrad. After several weeks of adjusting and
equilibration this provides best equilibrium conditions for
long-time stability. During data acquisition the images are
analyzed with a frame rate down to 250ms. Trajectories
for all particles in the field of view can be recorded over
several days providing the whole phase space information.
The thermal activated out-of-plane motion of the colloids
is in the range of a few tenth of nm so the ensemble can
be considered as ideally two-dimensional.

3 Local order

Adding small particles prevents global crystallization of
the system. As the susceptibility of the small particles is
roughly ten times smaller compared to that of the big
ones the local structure is dominated by the latter. This
is demonstrated in Figure 2 where the Voronoi cells of the
big particles (small particles are ignored) are shown for
two different interaction strengths Γ . Increasing Γ , the
small particles are forced into the potential dips formed
by the big particles. The Voronoi vertices of the big and
the positions of the small particles are highly correlated.
In Figure 3 the probability distribution of distances d of
the small particle to its next Voronoi vertex are shown for
various temperatures. One sees that for increasing interac-
tion strength the small particles are progressively pinned
to the potential minima between the big ones. The devia-
tion from a Gaussian distribution at higher interaction



F. Ebert et al.: Local crystalline order in a 2D colloidal glass former 163

dV

Fig. 3. The distribution of squared distances d2 of small par-
ticles from their nearest Voronoi vertex V is plotted (see inset)
for different values of Γ (Color codes: dark to bright: 5, 16,
27, 52, 71, 136, 159, 209, 458, 674). It is normalized with the
circumference 2πd and plotted on a logarithmic scale. A lin-
ear decay corresponds to a Gaussian distribution of the small
particles around the vertices. With decreasing temperature the
small particles are forced to the vertices.

strength originates from the fact that sometimes more
than one particle is pinned near this minimum.

This behavior is analogous to that of a binary crys-
talline structure of purely repulsive particles, where the
positions of particles are highly correlated such that the
weaker interacting species are fixed to the potential min-
ima of the big species. This tendency is at least found
in all calculated stable T = 0 crystal structures [16] for
ξ < 0.5. (For ξ > 0.5 this is not true in general.)

3.1 Formation of crystallites

A direct motivation for the tendency towards crystalliza-
tion is given by the observation of crystal grains such
as those shown in Figure 4. Regions consisting only of
big particles form hexagonal grains (Fig. 4A) as expected
from monodisperse samples (melting temperature Γm ≈
60 [19,20]). Here, interaction strengths are much higher
(Γ > 220). Ensembles of many small particles do not ex-
hibit crystalline order and form linear or branched chains
(Fig. 4B). Again, this is due to their low susceptibility. To
reach crystallization for the small particles alone, the mag-
netic field has to be stronger by a factor of 3.5 compared to
the big particles [21]. Thus, monodisperse regions of small
particles are expected to be fluid at the used magnetic
fields and they are easily squeezed into chainlike struc-
tures by the surrounding big particles.

The highlighted particles in Figure 4C form a clus-
ter of simple quadratic (SQ) unit cells made up of big
particles with a twofold basis that contains one small par-
ticle in the center. Another example for this structure is
given in Figure 4D where three touching crystal grains are
shown. These crystallites are quite stable (over many days
no melting has been observed, suggesting that an arrested
ordering transition may have occurred). The pictures are

Fig. 4. Pictures A and B: Monodisperse structures of big and
small particles at Γ ≈ 540. Big particles form hexagonal crystal
grains, while small particles only form chains. Picture C: SQ
crystal grain consisting of 64 Particles at Γ ≈ 425 with relative
concentration ξ = 1/2. Picture D: Three touching SQ crystal
grains at Γ ≈ 540. Picture E: A crystal grain at Γ ≈ 220
consisting of SQ columns alternating with hexagonal rhombs.
The relative concentration of this crystal structure is ξ = 1/3.
The average relative concentration of the samples in all shown
snapshots was ξ ≈ 45%.

representative examples for a very frequent appearance
especially in a sample mixture close to ξ = 0.5.

The example in Figure 4E is an alternating composi-
tion of SQ and hexagonal unit cells. The shown crystal
structure is representative and was found several times
but less often than pure SQ grains. The crystal structure
can be described as rhombic [16] with a threefold basis
of two big and one small particle. In this way the sys-
tem can organize in a periodic structure with a relative
concentration of ξ = 1/3. However, the averaged relative
concentration of the sample is 45%.

The observed crystallites (up to 64 particles) cannot
be formed by spontaneous fluctuations. An estimation of
the probability for a spontaneous formation can be ob-
tained by looking at classical nucleation theory [22]. The
probabilities for such spontaneous formations are found
to be diminutive [23]. This suggests that the frequent oc-
currence of crystallites is caused by the tendency towards
crystallization which favors growth of equilibrium periodic
structures.

Although the system shows glassy dynamics and is
globally disordered [11], the local order reflects the under-
lying crystalline structure. In Figure 5 (right) the pair cor-
relation functions for big and small particles are plotted in
units of the average distance of big particles for a strongly



164 The European Physical Journal E

b

a

c g

m

d

k

j

i

h

e
f

o

n

l

RhombicSimple Quadratic

Hexagonal Chains

a k d e l c

g

h

i j

b on

m

f

Notation a b c d e f g h i j k l m n o

Length/a 1 2 3
√

3
√

7 1/2 1 1 2 3
√

2 2
√

2
√

5
√

2 +
√

3
√

4 +
√

3

Fig. 5. Left: Basic crystal structures with highlighted unit cells: Big particles alone form hexagonal crystals, small particles
alone arrange in chains. Mixtures of both species with a relative concentration of ξ = 1/2 form SQ crystallites. The fourth
structure is a combination of hexagonal and SQ with relative concentration of ξ = 1/3 and has a rhombic unit cell. The
shortest and therefore most significant lattice vectors and lengths are indicated as arrows. Lattice vectors that show up in
several structures (e.g. vectors of SQ unit cell in rhombic structure) are not highlighted twice for reasons of clarity. Right: Pair
correlation functions of big (solid) and small (dashed) particles for Γ = 674 and relative concentration ξ = 42%. Peaks are
sharp and correlated between species. Grey bars correspond to the lengths of the shortest lattice vectors of the drawn crystal
structures. The labels at the bar ends note which bar is affiliated to gbb(r) or gss(r). All peaks and bars coincide one to one.
Bottom: The table contains the calculated lengths of the indicated lattice vectors from ideal crystal structures and therefore
the positions of the bars. The underlying lattice spacing a (hexagonal, SQ and rhombic) is taken from the position of the first
maximum of gbb(r) at a = 0.99 · l and for the chains the underlying spacing is taken as a/2.

dynamically arrested state at Γ = 674. The graph shows
that all features in the pair correlation function are in ex-
cellent agreement with the simple crystal lattices drawn
above: A hexagonal crystal of 100% big particles, chains
of small particles and a SQ crystal of 50% small and 50%
big particles. As mentioned above, small particles cannot
form hexagonal 2D crystals, but only chains. This is con-
firmed by the missing peak in gss(r) at r/l =

√
3/2 (long

diagonal distance of hexagonal rhomb) found in gbb(r) at

r/l =
√

3. A fourth structure (Fig. 5, left) stems from
combination of the hexagonal and SQ structure and can
be described as rhombic with a threefold basis [16]. In this
way the system may form periodic structures with a rela-
tive concentration of ξ = 1/3. All shortest lattice vectors
highlighted in the lattices are found in the pair correlation
functions at the positions of the grey bars. The peaks in

both correlation functions at r/l =
√

4 +
√

3 ≈ 2.39 are
statistical evidence for the rhombic structure. They can-
not be explained by any of the other structures and as
shown in Figure 4E they also occur in large grains.

3.2 Dependence of local crystalline order on relative
concentration

In this section we address the question how the local crys-
tal structure depends on the relative concentration ξ. In

Figure 6 we compare the pair correlation functions g(r)
of two samples with relative concentration ξ = 45% and
ξ = 29% at strong supercooling Γ = 556 and Γ = 529,
respectively. Due to a small shift of peak position in r in-
duced by the small particle fraction [15], the length scale
l = 1/

√
ρ

big
of the sample with ξ = 29% was normalized

by a factor of 1.04 to compare corresponding peaks.
We find that no additional peaks are showing up and

no peak is vanishing. Only the relative contributions from
the different underlying crystal structures are changed by
the change in relative concentration. With decreasing ξ
the big particles show stronger order in the hexagonal
phase compared to the SQ phase. This results in a rel-
ative decrease of the peaks in gbb(r) at r/l =

√
2 (SQ,

peak k in Fig. 5) and r/l =
√

4 +
√

3 ≈ 2.39 (rhombic,
peak o in Fig. 5) and a strong relative increase of peaks

at r/l = {1, 2, 3,
√

3,
√

7} (hexagonal, peaks a, b, c, d, e in
Fig. 5).

The change in the configurations of the small particles
as seen in gss(r) indicates a relative increase of SQ order

(peak k at r/l =
√

2 in Fig. 5) compared to chain order
(peak f at r/l = 0.5).

The comparison of both samples shows that the under-
lying crystal structures are not dependent on the relative
concentration. Only the relative fraction of crystallites is
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45%z?

29%z?

Big

Small

Fig. 6. Pair correlation functions g(r) of only small (bottom)
and only big (top) particles for two samples with different
relative concentration (dashed: ξ = 29% at Γ = 529, solid:
ξ = 45% at Γ = 556). For comparison of the peaks the ξ = 29%
samples r-axis was scaled with a factor of 1.04. This is due to
a peak shift induced by the higher fraction of small particles
(partial clustering). The upper graph is shifted by 5 for reason
of clarity. The peak heights change due to the relative fraction
of different crystallite structures.

influenced when the amount of small particles is decreased:
Hexagonal order of big particles is increased compared to
SQ order, and SQ order of the small particles is increased
compared to chain order.

3.3 Dependence of orientational order on interaction
parameter Γ

The hexagonal crystal structure was already investigated
in monodisperse systems [19]. The symmetry was inves-
tigated by sixfold bond order correlation function G6(r)
which is sensitive to the different bond order decays and
decay lengths in different phases [24]. It is remarkable that
the hexagonal structure also appears in the binary mix-
ture. The formation of tiny hexagonal crystallites is not
suppressed completely by the surrounding heterogenous
binary structure.

The square unit cell is a typical constituent occurring
in the SQ structure as well as in the rhombic structure.
Therefore we analyze the fourfold order for increasing in-
teraction strength Γ in the binary case using the fourfold
bond order correlation function G4(r) defined as

G4(r) = 〈|ψ4(ri)ψ
∗

4
(rj)|〉ij (2)

with r = |ri − rj | and ψ4(rk) = 1

Nl

∑

l e
i4θkl , where the

sum is carried out over all l nearest neighbors and θkl is
the angle between rk − rl and a common reference axis.
The result is shown in Figure 7. The bond order correla-
tion function G4 for big particles of a very fluid sample

Fig. 7. Bond order correlation function G4 for two indicated
values of Γ of just the big particles (ξ = 42%). Although the
difference in supercooling is drastic, the decay length of four-
fold orientation is not significantly increased. The system never
exhibits any long-range order.

(Γ = 5) is compared with a strongly supercooled sample
(Γ = 674). G4 decays on the length scale of a few interpar-
ticle distances l and shows no significant Γ -dependence.
The oscillations of the curves result from the local order
of the particles and reflect the pair correlation function
gbb(r). Note the height ratio of the first two peaks in the
curve at Γ = 674. From the pair correlation function of
the big particles in Figure 5 it is found that the distance
r/l = 1 is much more frequent than the distance r/l =

√
2.

Here the corresponding peaks show the opposite behavior.
This is understood by the degree of fourfold order con-
nected with these distances. While r/l = 1 corresponds
to both hexagonal (sixfold) and SQ order (fourfold), the

distance r/l =
√

2 is related exclusively to fourfold SQ
order. This local ordering in hexagonal and SQ order sig-
nificantly enhances the second peak in comparison to the
first one.

As the system does not exhibit any long-range orien-
tational order in the binary case we focus on local fourfold
order. The explicit fraction of SQ unit cells found in the
local order is discussed first. To compare this order for
different parameters, three selection criteria for the oc-
currence of square unit cells are introduced:

1. Selection of configurations with 1 small particle sur-
rounded by 4 big particles.

2. Fourfold local bond order parameter Ψ of configura-
tions selected in 1).

3. Bond length deviation parameter b of configurations
selected in 1).

As for the first criterion we check whether the four closest
particles of a small particle are big ones. The fourfold bond
order parameter of these configurations for the second
criteria is defined as

Ψ =
1

4

4
∑

NN

ei4θNN , (3)

where θNN are the angles of the four bonds between the
small bead in the center and the surrounding big particles
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Fig. 8. Graph A: Histogram of bond length deviations averaged over the four bonds of quadrangular configurations (1 small
bead in the center surrounded by 4 big beads) are shown for two different values of Γ . Graph B: Histogram of local bond order
parameters for two values of Γ calculated only for quadrangular configurations. Local fourfold order and average bond length
are strongly enhanced with increasing Γ . Graph C: The average deviation of bond lengths in SQ configurations (4 big, 1 small)
is shown versus Γ . Graph D: Bond order parameter p =

√
Ψ∗Ψ of SQ configurations is plotted versus Γ . The dashed lines

indicate the saturation values b = 5.7% and p = 0.92. The symbols (open squares, filled circles) differ because two different
samples were analyzed. Both samples have relative concentrations of ξ ≈ 45%.

relative to a fixed reference. The bond order parameter
p =

√
Ψ∗Ψ is a measure for the local fourfold symmetry.

For perfect right angles this parameter is p = 1. All other
configurations have lower values p > 0.

To characterize a SQ square this criterion is not suf-
ficient since also other configurations like a rhomb may
have right angles. Therefore in the third criteria the bond
length deviation parameter b is introduced as

b =
1

4

4
∑

NN

| lNN − l |
l

(4)

with the four bond lengths lNN and their average length l.
For a perfect rectangle (not only squares) this quantity
becomes zero. All three criteria combined can be used as
a local fourfold order parameter.

The graphs in Figure 8 show how sensitive these
parameters vary when the interaction parameter Γ is
changed. A strong and continuous increase of order is
found in both criteria. The upper graphs Figures 8A and B
show the distribution of both parameters b and p for two

extreme values of Γ . For the fluid case (Γ = 5) the lo-
cal order is very low as the distribution of b is broad and
centered around a value of about 15%. At Γ = 674 the
distributions of b and p are strongly peaked which reflects
the high local order. Average values of b and p saturate
with increasing Γ shown in Figures 8C and D. These sat-
uration values are taken as selection limits to determine
whether a quadrangular configuration is labelled as square
unit cell. In Figure 9 these selected SQ configurations are
highlighted in particular snapshots. Figure 10 shows the
fraction of SQ unit cells normalized by the number of small
particles (the maximum number of possible SQ configura-
tions). A continuous increase in the fraction of SQ unit
cells is observed indicating the tendency for crystalliza-
tion. The measurements for two different samples agree
well for Γ < 220 but significantly deviate for larger val-
ues of Γ , although both samples had comparable relative
concentrations.

Two reasons may explain this: i) The sample with less
order for Γ > 220 (filled circles) happened to have a slight
total drift, while the other (open squares) was absolute
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Fig. 9. Snapshots for Γ = 51 (left) and Γ = 520 (right). The highlighted particles have SQ unit cell configuration. The criteria
of whether a quadrangular configuration is considered as a SQ unit cell is b < 5.7% and p =

√
Ψ∗Ψ > 0.92, the saturation values

taken from Figures 8C and D.

Fig. 10. Fraction of SQ unit cells versus Γ . The symbols (open
squares, filled circles) differ because two different samples were
analyzed (both ξ ≈ 45%). For low Γ both samples exhibit
same amounts of SQ order. For high Γ , where the system is
nonergodic, the individual local particle distribution and sam-
ple history plays a role. A continuous increase in local order is
observed for decreasing system temperature.

quiescent. A small drift causes a non-negligible shear in
the sample which may have lead to a reduction in local
order. ii) The samples have different preparation histories,
one is cooled down very slowly (open squares) whereas
the other (filled circles) was cooled down rapidly and the
field of view was varied. Therefore the coincidence at low
Γ and the deviation at high Γ can be explained by the
nonergodicity of the system at these strongly supercooled
states on the timescale of measurement. Whereas for lower
Γ the fraction of unit cells seems to be an equilibrium
quantity, for higher Γ it depends strongly on the history
and individual composition of the sample.

4 Conclusion

The structure of our model 2D binary glass former shows
no long-range order but has a clear underlying substruc-
ture, which originates from the system’s tendency to crys-
tallize into a small set of crystal structures: Hexago-
nal order of big particles, chains of small particles, sim-
ple quadratic (SQ) with a local relative concentration of
ξ = 1/2 and rhombic with a local relative concentration of
ξ = 1/3. This was shown on the one hand by the appear-
ance of extended stable crystal grains and, on the other
hand, by the peaks of the pair correlation functions which
are in agreement with these lattice structures. Chang-
ing the relative concentration of the mixture does not af-
fect the peak structure in the pair correlation functions,
but modifies the relative peak heights. This demonstrates,
that the crystal structures do not change by themselves,
but their relative contribution to the globally disordered
state. The rapid decay of the fourfold bond order cor-
relation function reveals that increasing the interaction
parameter Γ does not significantly enhance long-range or-
der but strongly enhances local fourfold order, as found in
the local bond order statistics. Different selection criteria
were introduced to probe the amount of square unit cells
for a given interaction Γ . A continuous increase with some
indication of a change in slope near Γ ≈ 50 is found in
Figure 10 which might indicate an underlying phase tran-
sition. The saturation at high Γ values depends on the
individual history and local composition of the sample.

Beside the investigated structures there is a whole
bunch of other even more exotic crystal lattices that are
predicted to be stable [16] especially for higher relative
concentrations of small particles. In particular the struc-
tures collectively described as “chains” in this work are
expected to be identified as pieces of crystalline order with
high relative concentration ξ.
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Of special interest is the connection of the found struc-
tures to local dynamics and how local crystallinity is re-
lated to dynamic heterogeneity [11]. From the stability of
larger crystal grains it is expected that regions with high
crystallinity strongly contribute to slow down the systems
dynamics.

We thank P. Dillmann and U. Gasser for ideas and fruitful
discussion. This work was supported by the DFG (Deutsche
Forschungsgemeinschaft) in the frame of Sonderforschungs-
bereich 513 project B6 and the Sonderforschungsbereich Tran-
sregio 6 project C2.
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